Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Elife ; 112022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080491

RESUMO

Neural circuits are made of a vast diversity of neuronal cell types. While immense progress has been made in classifying neurons based on morphological, molecular, and functional properties, understanding how this heterogeneity contributes to brain function during natural behavior has remained largely unresolved. In the present study, we combined the juxtacellular recording and labeling technique with optogenetics in freely moving mice. This allowed us to selectively target molecularly defined cell classes for in vivo single-cell recordings and morphological analysis. We validated this strategy in the CA1 region of the mouse hippocampus by restricting Channelrhodopsin expression to Calbindin-positive neurons. Directly versus indirectly light-activated neurons could be readily distinguished based on the latencies of light-evoked spikes, with juxtacellular labeling and post hoc histological analysis providing 'ground-truth' validation. Using these opto-juxtacellular procedures in freely moving mice, we found that Calbindin-positive CA1 pyramidal cells were weakly spatially modulated and conveyed less spatial information than Calbindin-negative neurons - pointing to pyramidal cell identity as a key determinant for neuronal recruitment into the hippocampal spatial map. Thus, our method complements current in vivo techniques by enabling optogenetic-assisted structure-function analysis of single neurons recorded during natural, unrestrained behavior.


Assuntos
Região CA1 Hipocampal/fisiologia , Hipocampo/metabolismo , Movimento/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/química , Calbindinas/genética , Channelrhodopsins/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética/métodos , Células Piramidais/química
2.
STAR Protoc ; 2(4): 100877, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34816125

RESUMO

Glutamatergic neurotransmission is a widespread form of synaptic excitation in the mammalian brain. The development of genetically encoded fluorescent glutamate sensors allows monitoring synaptic signaling in living brain tissue in real time. Here, we describe single- and two-photon imaging of synaptically evoked glutamatergic population signals in acute hippocampal slices expressing the fluorescent glutamate sensor SF-iGluSnFR.A184S in CA1 or CA3 pyramidal neurons. The protocol can be readily used to study defective synaptic glutamate signaling in mouse models of neuropsychiatric disorders, such as Alzheimer disease. For complete details on the use and execution of this protocol, please refer to Zott et al. (2019).


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo , Imagem Óptica/métodos , Sinapses/fisiologia , Animais , Feminino , Corantes Fluorescentes/química , Hipocampo/química , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Masculino , Camundongos , Imagem Molecular , Células Piramidais/química , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia
3.
Mol Brain ; 14(1): 158, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645511

RESUMO

Alterations in the canonical processing of Amyloid Precursor Protein generate proteoforms that contribute to the onset of Alzheimer's Disease. Modified composition of γ-secretase or mutations in its subunits has been directly linked to altered generation of Amyloid beta. Despite biochemical evidence about the role of γ-secretase in the generation of APP, the molecular origin of how spatial heterogeneity in the generation of proteoforms arises is not well understood. Here, we evaluated the localization of Nicastrin, a γ-secretase subunit, at nanometer sized functional zones of the synapse. With the help of super resolution microscopy, we confirm that Nicastrin is organized into nanodomains of high molecular density within an excitatory synapse. A similar nanoorganization was also observed for APP and the catalytic subunit of γ-secretase, Presenilin 1, that were discretely associated with Nicastrin nanodomains. Though Nicastrin is a functional subunit of γ-secretase, the Nicastrin and Presenilin1 nanodomains were either colocalized or localized independent of each other. The Nicastrin and Presenilin domains highlight a potential independent regulation of these molecules different from their canonical secretase function. The collisions between secretases and substrate molecules decide the probability and rate of product formation for transmembrane proteolysis. Our observations of secretase nanodomains indicate a spatial difference in the confinement of substrate and secretases, affecting the local probability of product formation by increasing their molecular availability, resulting in differential generation of proteoforms even within single synapses.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Glicoproteínas de Membrana/química , Sinapses/química , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Endocitose , Neurônios GABAérgicos/química , Neurônios GABAérgicos/ultraestrutura , Microscopia/métodos , Proteínas do Tecido Nervoso/análise , Densidade Pós-Sináptica/química , Densidade Pós-Sináptica/ultraestrutura , Presenilina-1/química , Domínios Proteicos , Células Piramidais/química , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura
4.
J Neurosci ; 41(34): 7182-7196, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34253625

RESUMO

Up states are the best studied example of an emergent neural dynamic regime. Computational models based on a single class of inhibitory neurons indicate that Up states reflect bistable dynamic systems in which positive feedback is stabilized by strong inhibition and predict a paradoxical effect in which increased drive to inhibitory neurons results in decreased inhibitory activity. To date, however, computational models have not incorporated empirically defined properties of parvalbumin (PV) and somatostatin (SST) neurons. Here we first experimentally characterized the frequency-current (F-I) curves of pyramidal (Pyr), PV, and SST neurons from mice of either sex, and confirmed a sharp difference between the threshold and slopes of PV and SST neurons. The empirically defined F-I curves were incorporated into a three-population computational model that simulated the empirically derived firing rates of pyramidal, PV, and SST neurons. Simulations revealed that the intrinsic properties were sufficient to predict that PV neurons are primarily responsible for generating the nontrivial fixed points representing Up states. Simulations and analytical methods demonstrated that while the paradoxical effect is not obligatory in a model with two classes of inhibitory neurons, it is present in most regimes. Finally, experimental tests validated predictions of the model that the Pyr ↔ PV inhibitory loop is stronger than the Pyr ↔ SST loop.SIGNIFICANCE STATEMENT Many cortical computations, such as working memory, rely on the local recurrent excitatory connections that define cortical circuit motifs. Up states are among the best studied examples of neural dynamic regimes that rely on recurrent excitatory excitation. However, this positive feedback must be held in check by inhibition. To address the relative contribution of PV and SST neurons, we characterized the intrinsic input-output differences between these classes of inhibitory neurons and, using experimental and theoretical methods, show that the higher threshold and gain of PV leads to a dominant role in network stabilization.


Assuntos
Neurônios/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Retroalimentação Fisiológica , Camundongos , Modelos Neurológicos , Neurônios/química , Neurônios/classificação , Optogenética , Parvalbuminas/análise , Células Piramidais/química , Células Piramidais/fisiologia , Somatostatina/análise , Transfecção
5.
J Comp Neurol ; 529(13): 3292-3312, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960421

RESUMO

Cortical pyramidal neurons (PNs) containing nonphosphorylated neurofilaments (NNFs) localized with the SMI-32 monoclonal antibody have been shown to be especially vulnerable to degeneration in Alzheimer's disease (AD). The present investigation is the first to study the expression of SMI-32+ NNFs in neurons of the basolateral nuclear complex of the amygdala (BNC), which contains cortex-like PNs and nonpyramidal neurons (NPNs). We observed that PNs in the rat basolateral nucleus (BL), but not in the lateral (LAT) or basomedial (BM) nuclei, have significant levels of SMI-32-ir in their somata with antibody diluents that did not contain Triton X-100, but staining in these cells was greatly attenuated when the antibody diluent contained 0.3% Triton. Using Triton-containing diluents, we found that all SMI-32+ neurons in all three of the BNC nuclei were NPNs. Using a dual-labeling immunoperoxidase technique, we demonstrated that most of these SMI-32+ NPNs were parvalbumin-positive (PV+) or somatostatin-positive NPNs but not vasoactive intestinal peptide-positive or neuropeptide Y-positive NPNs. Using a technique that combines retrograde tracing with SMI-32 immunohistochemistry using intermediate levels of Triton in the diluent, we found that all BNC neurons projecting to the mediodorsal thalamic nucleus (MD) were large NPNs, and most were SMI-32+. In contrast, BNC neurons projecting to the ventral striatum or cerebral cortex were PNs that expressed low levels of SMI-32 immunoreactivity (SMI-32-ir) in the BL, and no SMI-32-ir in the LAT or BM. These data suggest that the main neuronal subpopulations in the BNC that degenerate in AD may be PV+ and MD-projecting NPNs.


Assuntos
Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Filamentos Intermediários/metabolismo , Neurônios/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/química , Filamentos Intermediários/química , Masculino , Neurônios/química , Fosforilação/fisiologia , Células Piramidais/química , Células Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Cereb Cortex ; 31(6): 2868-2885, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497440

RESUMO

Food restriction (FR) evokes running, which may promote adaptive foraging in times of food scarcity, but can become lethal if energy expenditure exceeds caloric availability. Here, we demonstrate that chemogenetic activation of either the general medial prefrontal cortex (mPFC) pyramidal cell population, or the subpopulation projecting to dorsal striatum (DS) drives running specifically during hours preceding limited food availability, and not during ad libitum food availability. Conversely, suppression of mPFC pyramidal cells generally, or targeting mPFC-to-DS cells, reduced wheel running specifically during FR and not during ad libitum food access. Post mortem c-Fos analysis and electron microscopy of mPFC layer 5 revealed distinguishing characteristics of mPFC-to-DS cells, when compared to neighboring non-DS-projecting pyramidal cells: 1) greater recruitment of GABAergic activity and 2) less axo-somatic GABAergic innervation. Together, these attributes position the mPFC-to-DS subset of pyramidal cells to dominate mPFC excitatory outflow, particularly during FR, revealing a specific and causal role for mPFC-to-DS control of the decision to run during food scarcity. Individual differences in GABAergic activity correlate with running response to further support this interpretation. FR enhancement of PFC-to-DS activity may influence neural circuits both in studies using FR to motivate animal behavior and in human conditions hallmarked by FR.


Assuntos
Restrição Calórica/tendências , Tomada de Decisões/fisiologia , Metabolismo Energético/fisiologia , Rede Nervosa/metabolismo , Córtex Pré-Frontal/metabolismo , Corrida/fisiologia , Animais , Tomada de Decisões/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Rede Nervosa/química , Rede Nervosa/efeitos dos fármacos , Piperazinas/administração & dosagem , Piperazinas/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/química , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Corrida/psicologia
7.
Neuron ; 109(4): 663-676.e5, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33333001

RESUMO

Neocortical pyramidal neurons regulate firing around a stable mean firing rate (FR) that can differ by orders of magnitude between neurons, but the factors that determine where individual neurons sit within this broad FR distribution are not understood. To access low- and high-FR neurons for ex vivo analysis, we used Ca2+- and UV-dependent photoconversion of CaMPARI2 in vivo to permanently label neurons according to mean FR. CaMPARI2 photoconversion was correlated with immediate early gene expression and higher FRs ex vivo and tracked the drop and rebound in ensemble mean FR induced by prolonged monocular deprivation. High-activity L4 pyramidal neurons had greater intrinsic excitability and recurrent excitatory synaptic strength, while E/I ratio, local output strength, and local connection probability were not different. Thus, in L4 pyramidal neurons (considered a single transcriptional cell type), a broad mean FR distribution is achieved through graded differences in both intrinsic and synaptic properties.


Assuntos
Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/metabolismo , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia , Animais , Cálcio/análise , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/química , Neurônios/efeitos da radiação , Células Piramidais/química , Células Piramidais/efeitos da radiação , Transmissão Sináptica/efeitos da radiação , Raios Ultravioleta
8.
Neuropharmacology ; 182: 108379, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130041

RESUMO

The dentate gyrus and hippocampal area CA3 region of the mammalian brain contains the highest levels of brain-derived neurotrophic factor (BDNF) and its canonical membrane receptor, tropomyosin-related kinase B (TrkB). Therefore, the present study examines the expression and physiological responses triggered by activation of TrkB on hippocampal area CA3 interneurones and pyramidal cells of the rat hippocampus. Triple immunolabelling for TrkB, glutamate decarboxylase 67, and the calcium-binding proteins parvalbumin, calbindin or calretinin confirms the somatic expression of TrkB in all CA3 sublayers. TrkB-positive interneurones with fast-spiking discharge are restricted to strata oriens and lucidum, whereas regular-spiking interneurones are found in the strata lucidum, radiatum and lacunosum-moleculare. Activation of TrkB receptors with 7,8-dihydroxyflavone (DHF) modulates amplitude and frequency of spontaneous synaptic currents recorded from CA3 interneurones. Furthermore, the isolated excitatory postsynaptic currents (EPSC) of CA3 interneurones evoked by the mossy fibres (MF) or commissural/associational (C/A) axons, show input-specific synaptic potentiation in response to TrkB stimulation. On CA3 pyramidal cells, stimulation with DHF potentiates the MF synaptic transmission and increases the MF-EPSP - spike coupling. The latter exhibits a dramatic increase when picrotoxin is bath perfused after DHF, indicating that local interneurones restrain the excitability mediated by activation of TrkB. Therefore, we propose that release of BDNF on area CA3 reshapes the output of this hippocampal region by simultaneous activation of TrkB on GABAergic interneurones and pyramidal cells.


Assuntos
Região CA3 Hipocampal/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Receptor trkB/biossíntese , Potenciais de Ação , Animais , Região CA3 Hipocampal/química , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Interneurônios/química , Masculino , Técnicas de Cultura de Órgãos , Células Piramidais/química , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética
9.
Elife ; 92020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206597

RESUMO

Gamma oscillations are a prominent activity pattern in the cerebral cortex. While gamma rhythms have been extensively studied in the adult prefrontal cortex in the context of cognitive (dys)functions, little is known about their development. We addressed this issue by using extracellular recordings and optogenetic stimulations in mice across postnatal development. We show that fast rhythmic activity in the prefrontal cortex becomes prominent during the second postnatal week. While initially at about 15 Hz, fast oscillatory activity progressively accelerates with age and stabilizes within gamma frequency range (30-80 Hz) during the fourth postnatal week. Activation of layer 2/3 pyramidal neurons drives fast oscillations throughout development, yet the acceleration of their frequency follows similar temporal dynamics as the maturation of fast-spiking interneurons. These findings uncover the development of prefrontal gamma activity and provide a framework to examine the origin of abnormal gamma activity in neurodevelopmental disorders.


Assuntos
Ritmo Gama , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Córtex Pré-Frontal/química , Células Piramidais/química , Células Piramidais/fisiologia
10.
J Neurosci ; 40(30): 5797-5806, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32554511

RESUMO

Plasticity within hippocampal circuits is essential for memory functions. The hippocampal CA2/CA3 region is thought to be able to rapidly store incoming information by plastic modifications of synaptic weights within its recurrent network. High-frequency spike-bursts are believed to be essential for this process, by serving as triggers for synaptic plasticity. Given the diversity of CA2/CA3 pyramidal neurons, it is currently unknown whether and how burst activity, assessed in vivo during natural behavior, relates to principal cell heterogeneity. To explore this issue, we juxtacellularly recorded the activity of single CA2/CA3 neurons from freely-moving male mice, exploring a familiar environment. In line with previous work, we found that spatial and temporal activity patterns of pyramidal neurons correlated with their topographical position. Morphometric analysis revealed that neurons with a higher proportion of distal dendritic length displayed a higher tendency to fire spike-bursts. We propose that the dendritic architecture of pyramidal neurons might determine burst-firing by setting the relative amount of distal excitatory inputs from the entorhinal cortex.SIGNIFICANCE STATEMENT High-frequency spike-bursts are thought to serve fundamental computational roles within neural circuits. Within hippocampal circuits, spike-bursts are believed to serve as potent instructive signals, which increase the efficiency of information transfer and induce rapid modifications of synaptic efficacies. In the present study, by juxtacellularly recording and labeling single CA2/CA3 neurons in freely-moving mice, we explored whether and how burst propensity relates to pyramidal cell heterogeneity. We provide evidence that, within the CA2/CA3 region, neurons with higher proportion of distal dendritic length display a higher tendency to fire spike-bursts. Thus, the relative amount of entorhinal inputs, arriving onto the distal dendrites, might determine the burst propensity of individual CA2/CA3 neurons in vivo during natural behavior.


Assuntos
Região CA2 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Movimento/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA2 Hipocampal/química , Região CA3 Hipocampal/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/química
11.
J Neurosci Res ; 98(10): 2072-2095, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592267

RESUMO

Electrical stimulation has been critical in the development of an understanding of brain function and disease. Despite its widespread use and obvious clinical potential, the mechanisms governing stimulation in the cortex remain largely unexplored in the context of pulse parameters. Modeling studies have suggested that modulation of stimulation pulse waveform may be able to control the probability of neuronal activation to selectively stimulate either cell bodies or passing fibers depending on the leading polarity. Thus, asymmetric waveforms with equal charge per phase (i.e., increasing the leading phase duration and proportionately decreasing the amplitude) may be able to activate a more spatially localized or distributed population of neurons if the leading phase is cathodic or anodic, respectively. Here, we use two-photon and mesoscale calcium imaging of GCaMP6s expressed in excitatory pyramidal neurons of male mice to investigate the role of pulse polarity and waveform asymmetry on the spatiotemporal properties of direct neuronal activation with 10-Hz electrical stimulation. We demonstrate that increasing cathodic asymmetry effectively reduces neuronal activation and results in a more spatially localized subpopulation of activated neurons without sacrificing the density of activated neurons around the electrode. Conversely, increasing anodic asymmetry increases the spatial spread of activation and highly resembles spatiotemporal calcium activity induced by conventional symmetric cathodic stimulation. These results suggest that stimulation polarity and asymmetry can be used to modulate the spatiotemporal dynamics of neuronal activity thus increasing the effective parameter space of electrical stimulation to restore sensation and study circuit dynamics.


Assuntos
Cálcio/fisiologia , Córtex Cerebral/fisiologia , Neurópilo/fisiologia , Células Piramidais/fisiologia , Animais , Cálcio/análise , Córtex Cerebral/química , Córtex Cerebral/citologia , Estimulação Elétrica/métodos , Eletrodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microeletrodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurópilo/química , Células Piramidais/química
12.
Elife ; 92020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32496194

RESUMO

The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.


Assuntos
Interneurônios/fisiologia , Plasticidade Neuronal , Adulto , Idoso , Animais , Evolução Biológica , Encéfalo/fisiologia , Feminino , Humanos , Interneurônios/química , Masculino , Camundongos , Pessoa de Meia-Idade , Neuroglia/química , Neuroglia/fisiologia , Células Piramidais/química , Células Piramidais/fisiologia , Adulto Jovem
13.
CNS Neurol Disord Drug Targets ; 19(4): 264-275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32496992

RESUMO

BACKGROUND: Mammalian central neurons regulate their intracellular pH (pHi) strongly and even slight pHi-fluctuations can influence inter-/intracellular signaling, synaptic plasticity and excitability. OBJECTIVE: For the first time, we investigated topiramate´s (TPM) influence on pHi-behavior of human central neurons representing a promising target for anticonvulsants and antimigraine drugs. METHODS: In slice-preparations of tissue resected from the middle temporal gyrus of five adults with intractable temporal lobe epilepsy, BCECF-AM-loaded neocortical pyramidal-cells were investigated by fluorometry. The pHi-regulation was estimated by using the recovery-slope from intracellular acidification after an Ammonium-Prepulse (APP). RESULTS: Among 17 pyramidal neurons exposed to 50 µM TPM, seven (41.24%) responded with an altered resting-pHi (7.02±0.12), i.e., acidification of 0.01-0.03 pH-units. The more alkaline the neurons, the greater the TPM-related acidifications (r=0.7, p=0.001, n=17). The recovery from APPacidification was significantly slowed under TPM (p<0.001, n=5). Further experiments using nominal bicarbonate-free (n=2) and chloride-free (n=2) conditions pointed to a modulation of the HCO3 -- driven pHi-regulation by TPM, favoring a stimulation of the passive Cl-/HCO3 --antiporter (CBT) - an acid-loader predominantly in more alkaline neurons. CONCLUSION: TPM modulated the bicarbonate-driven pHi-regulation, just as previously described in adult guinea-pig hippocampal neurons. We discussed the significance of the resulting subtle acidifications for beneficial antiepileptic, antimigraine and neuroprotective effects as well as for unwanted cognitive deficits.


Assuntos
Equilíbrio Ácido-Base/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Neocórtex/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Topiramato/farmacologia , Adulto , Antiportadores de Cloreto-Bicarbonato/metabolismo , Epilepsia do Lobo Temporal/cirurgia , Feminino , Fluorometria , Hipocampo/patologia , Humanos , Masculino , Malformações do Desenvolvimento Cortical , Neocórtex/química , Neocórtex/citologia , Neocórtex/metabolismo , Neurônios/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Piramidais/química , Células Piramidais/metabolismo , Esclerose , Lobo Temporal/química , Lobo Temporal/citologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/metabolismo , Adulto Jovem
14.
J Neurophysiol ; 123(6): 2426-2436, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401126

RESUMO

In this study, the effect of extracellular pH on glutamatergic synaptic transmission was examined in mechanically dissociated rat hippocampal CA3 pyramidal neurons using a whole-cell patch-clamp technique under voltage-clamp conditions. Native synaptic boutons were isolated without using any enzymes, using a so-called "synapse bouton preparation," and preserved for the electrical stimulation of single boutons. Both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) were found to decrease and increase in response to modest acidic (~pH 6.5) and basic (~pH 8.5) solutions, respectively. These changes in sEPSC frequency were not affected by the addition of TTX but completely disappeared by successive addition of Cd2+. However, changes in sEPSC amplitude induced by acidic and basic extracellular solutions were not affected by the addition of neither TTX nor Cd2+. The glutamate-induced whole-cell currents were decreased and increased by acidic and basic solutions, respectively. Acidic pH also decreased the amplitude and increased the failure rate (Rf) and paired-pulse rate (PPR) of glutamatergic electrically evoked excitatory postsynaptic currents (eEPSCs), while a basic pH increased the amplitude and decreased both the Rf and PPR of eEPSCs. The kinetics of the currents were not affected by changes in pH. Acidic and basic solutions decreased and increased voltage-gated Ca2+ but not Na+ channel currents in the dentate gyrus granule cell bodies. Our results indicate that extracellular pH modulates excitatory transmission via both pre- and postsynaptic sites, with the presynaptic modulation correlated to changes in voltage-gated Ca2+ channel currents.NEW & NOTEWORTHY The effects of external pH changes on spontaneous, miniature, and evoked excitatory synaptic transmission in CA3 hippocampal synapses were examined using the isolated nerve bouton preparation, which allowed for the accurate regulation of extracellular pH at the synapses. Acidification generally reduced transmission, partly via effects on presynaptic Ca2+ channel currents, while alkalization generally enhanced transmission. Both pre- and postsynaptic sites contributed to these effects.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Concentração de Íons de Hidrogênio , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Animais , Região CA3 Hipocampal/química , Feminino , Ácido Glutâmico/metabolismo , Masculino , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/química , Células Piramidais/química , Ratos , Ratos Wistar
15.
Science ; 364(6442)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123108

RESUMO

Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that γ-aminobutyric acid (GABA)-releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can shift hippocampal network state and bidirectionally modify the strength of contextual fear memory formation. Our results indicate that brainstem NI GABAergic cells are essential for controlling contextual memories.


Assuntos
Aprendizagem por Associação/fisiologia , Neurônios GABAérgicos/fisiologia , Núcleos da Rafe/fisiologia , Animais , Feminino , Interneurônios/química , Interneurônios/fisiologia , Masculino , Testes de Memória e Aprendizagem , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Células Piramidais/química , Células Piramidais/fisiologia , Somatostatina/análise , Somatostatina/fisiologia , Ritmo Teta
16.
Biosens Bioelectron ; 133: 183-191, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30928737

RESUMO

Alzheimer's disease (AD) is a chronic central neurodegenerative disease. The pathological features of AD are the extracellular deposition of senile plaques formed by amyloid-ß oligomers (AßOs) and the intracellular accumulation of neurofibrillary tangles. However, due to the lack of effective method and experimental models to study the cognitive decline, communication at cell resolution and the implementation of interventions, the diagnosis and treatment on AD still progress slowly. In this paper, we established a pathological model of AD in vitro based on AßOs-induced hippocampal neuronal network chip for multi-site dynamic analysis of the neuronal electrical activity and network connection. The multiple characteristic parameters, including positive and negative spike intervals, firing rate and peak-to-peak values, were extracted through the analysis of spike signals, and two firing patterns from the interneurons and pyramidal neurons were recorded. The spatial firing patterns mapping and cross-correlation between channels were performed to validate the degeneration of neuronal network connectivity. Moreover, an electrical stimulation with frequency at 40 Hz was exerted to preliminarily explore the therapeutic effect on the pathological model of AD. This neuronal network chip enables the implementation of AD models in vitro for studying basic mechanisms of neurodegeneration within networks and for the parallel testing of various potential therapies. It can be a novel technique in the research of AD pathological model in vitro.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/isolamento & purificação , Técnicas Biossensoriais , Sistemas Microeletromecânicos/métodos , Peptídeos beta-Amiloides/química , Estimulação Elétrica , Eletrólitos/química , Hipocampo/química , Hipocampo/efeitos da radiação , Humanos , Interneurônios/química , Interneurônios/efeitos da radiação , Dispositivos Lab-On-A-Chip , Rede Nervosa/química , Rede Nervosa/efeitos da radiação , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/efeitos da radiação , Células Piramidais/química , Células Piramidais/efeitos da radiação
17.
Metallomics ; 11(1): 151-165, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30398510

RESUMO

A unique combination of sensitivity, resolution, and penetration make X-ray fluorescence imaging (XFI) ideally suited to investigate trace elemental distributions in the biological context. XFI has gained widespread use as an analytical technique in the biological sciences, and in particular enables exciting new avenues of research in the field of neuroscience. In this study, elemental mapping by XFI was applied to characterise the elemental content within neuronal cell layers of hippocampal sub-regions of mice and rats. Although classical histochemical methods for metal detection exist, such approaches are typically limited to qualitative analysis. Specifically, histochemical methods are not uniformly sensitive to all chemical forms of a metal, often displaying variable sensitivity to specific "pools" or chemical forms of a metal. In addition, histochemical methods require fixation and extensive chemical treatment of samples, creating the strong likelihood for metal redistribution, leaching, or contamination. Direct quantitative elemental mapping of total elemental pools, in situ within ex vivo tissue sections, without the need for chemical fixation or addition of staining reagents is not possible with traditional histochemical methods; however, such a capability, which is provided by XFI, can offer an enormous analytical advantage. The results we report herein demonstrate the analytical advantage of XFI elemental mapping for direct, label-free metal quantification, in situ within ex vivo brain tissue sections. Specifically, we definitively characterise for the first time, the abundance of Fe within the pyramidal cell layers of the hippocampus. Localisation of Fe to this cell layer is not reproducibly achieved with classical Perls histochemical Fe stains. The ability of XFI to directly quantify neuronal elemental (P, S, Cl, K, Ca, Fe, Cu, Zn) distributions, revealed unique profiles of Fe and Zn within anatomical sub-regions of the hippocampus i.e., cornu ammonis 1, 2 or 3 (CA1, CA2 or CA3) sub-regions. Interestingly, our study reveals a unique Fe gradient across neuron populations within the non-degenerating and pathology free rat hippocampus, which curiously mirrors the pattern of region-specific vulnerability of the hippocampus that has previously been established to occur in various neurodegenerative diseases.


Assuntos
Hipocampo/citologia , Células Piramidais/química , Animais , Elementos Químicos , Hipocampo/química , Ferro/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/análise , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Espectrometria por Raios X/métodos , Zinco/análise
18.
Neuron ; 97(5): 1126-1136.e10, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429935

RESUMO

Most synaptic excitatory connections are made on dendritic spines. But how the voltage in spines is modulated by its geometry remains unclear. To investigate the electrical properties of spines, we combine voltage imaging data with electro-diffusion modeling. We first present a temporal deconvolution procedure for the genetically encoded voltage sensor expressed in hippocampal cultured neurons and then use electro-diffusion theory to compute the electric field and the current-voltage conversion. We extract a range for the neck resistances of 〈R〉=100±35MΩ. When a significant current is injected in a spine, the neck resistance can be inversely proportional to its radius, but not to the radius square, as predicted by Ohm's law. We conclude that the postsynaptic voltage cannot only be modulated by changing the number of receptors, but also by the spine geometry. Thus, spine morphology could be a key component in determining synaptic transduction and plasticity.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Modelos Neurológicos , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Espinhas Dendríticas/química , Hipocampo/química , Hipocampo/citologia , Células Piramidais/química , Sinapses/química
19.
Neuron ; 96(2): 505-520.e7, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024669

RESUMO

Excitatory control of inhibitory neurons is poorly understood due to the difficulty of studying synaptic connectivity in vivo. We inferred such connectivity through analysis of spike timing and validated this inference using juxtacellular and optogenetic control of presynaptic spikes in behaving mice. We observed that neighboring CA1 neurons had stronger connections and that superficial pyramidal cells projected more to deep interneurons. Connection probability and strength were skewed, with a minority of highly connected hubs. Divergent presynaptic connections led to synchrony between interneurons. Synchrony of convergent presynaptic inputs boosted postsynaptic drive. Presynaptic firing frequency was read out by postsynaptic neurons through short-term depression and facilitation, with individual pyramidal cells and interneurons displaying a diversity of spike transmission filters. Additionally, spike transmission was strongly modulated by prior spike timing of the postsynaptic cell. These results bridge anatomical structure with physiological function.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Animais , Região CA1 Hipocampal/química , Região CA1 Hipocampal/citologia , Feminino , Interneurônios/química , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Optogenética/métodos , Células Piramidais/química , Distribuição Aleatória
20.
Neurochem Res ; 42(8): 2305-2313, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28349361

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a key downstream protein in the PI3K/Akt pathway. Phosphorylation of serine 9 of GSK-3ß (GSK-3ß activity inhibition) promotes cell survival. In this study, we examined changes in expressions of GSK-3ß and phosphorylation of GSK-3ß (p-GSK-3ß) in the gerbil hippocampal CA1 area after 5 min of transient cerebral ischemia. GSK-3ß immunoreactivity in the CA1 area was increased in pyramidal cells at 6 h after ischemia-reperfusion. It was decreased in CA1 pyramidal cells from 12 h after ischemia-reperfusion, and hardly detected in the CA1 pyramidal cells at 5 days after ischemia-reperfusion. p-GSK-3ß immunoreactivity was slightly decreased in CA1 pyramidal cells at 6 and 12 h after ischemia-reperfusion. It was significantly increased in these cells at 1 and 2 days after ischemia-reperfusion. Five days after ischemia-reperfusion, p-GSK-3ß immunoreactivity was hardly found in CA1 pyramidal cells. However, p-GSK-3ß immunoreactivity was strongly expressed in astrocytes primarily distributed in strata oriens and radiatum. In conclusion, GSK-3ß and p-GSK-3ß were significantly changed in pyramidal cells and/or astrocytes in the gerbil hippocampal CA1 area following 5 min of transient cerebral ischemia. This finding indicates that GSK-3ß and p-GSK-3ß are closely related to delayed neuronal death.


Assuntos
Astrócitos/enzimologia , Isquemia Encefálica/enzimologia , Região CA1 Hipocampal/enzimologia , Regulação Enzimológica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/biossíntese , Células Piramidais/enzimologia , Animais , Astrócitos/química , Astrócitos/patologia , Aprendizagem da Esquiva/fisiologia , Isquemia Encefálica/patologia , Região CA1 Hipocampal/química , Região CA1 Hipocampal/patologia , Morte Celular/fisiologia , Gerbillinae , Glicogênio Sintase Quinase 3 beta/análise , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Células Piramidais/química , Células Piramidais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...